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Abstract

In clique tree clustering, inference consists of propagation
in a clique tree compiled from a Bayesian network. In this
paper, we develop an analytical approach to characterizing
clique tree growth as a function of increasing Bayesian net-
work connectedness, speci�cally: (i) the expected number of
moral edges in their moral graphs or (ii) the ratio of the num-
ber of non-root nodes to the number of root nodes. In exper-
iments, we systematically increase the connectivity of bipar-
tite Bayesian networks, and �nd that clique tree size growth
is well-approximated by Gompertz growth curves. This re-
search improves the understanding of the scaling behavior of
clique tree clustering, provides a foundation for benchmark-
ing and developing improved BN inference algorithms, and
presents an aid for analytical trade-off studies of tree cluster-
ing using growth curves.

Introduction
Bayesian networks play a central role in a wide range of
automated reasoning applications, including in diagnosis,
probabilistic risk analysis, information fusion, error correc-
tion coding, and object recognition. Clique tree clustering,
where inference takes the form of propagation in a clique
tree compiled from a Bayesian network (BN), is currently
among the most prominent Bayesian network inference al-
gorithms (Lauritzen & Spiegelhalter 1988; Andersen et al.
1989; Shenoy 1989). The performance of tree clustering al-
gorithms depends on a BN's treewidth or the optimal max-
imal clique size of a BN's induced clique tree (Dechter &
Pearl 1987; Darwiche 2001; Dechter & Fattah 2001). The
performance of other exact BN inference algorithms also de-
pends on treewidth.
A key research question is, then, how the clique tree size

of a BN (and consequently, inference time) depends on some
measure of the BN's connectedness. One way to investigate
this is through the use of distributions of problem instances
(Suermondt & Cooper 1990; Ide, Cozman, & Ramos 2004;
Mengshoel, Wilkins, & Roth 2006). Taking this approach,
and varying the ratio C=V between the number of clauses C
and the number of variables V in CNF formulas, an easy-
hard-easy pattern was established for the Davis-Putnam
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search algorithm (Mitchell, Selman, & Levesque 1992). Us-
ing a similar approach in a BN setting, an easy-hard-harder
pattern has been observed for clique tree clustering (Meng-
shoel, Wilkins, & Roth 2006).
In this paper, we develop macroscopic models of clique

tree growth by means of restricted growth curves, and il-
lustrate our approach using bipartite BNs. A key �nding
is that Gompertz growth curves are justi�ed on theoretical
grounds and also �t very well to experimental data gener-
ated using the BPART algorithm (Mengshoel, Wilkins, &
Roth 2006). Our analysis using Gompertz growth curves
is novel; they are common in biological and medical re-
search (Banks 1994; Lindsey 2004) but have not previously
been used to characterize clique tree growth. We provide
improved analysis compared to previous research, where
an easy-hard-harder pattern and approximately exponential
growth as a function of C=V -ratio were established (Meng-
shoel, Wilkins, & Roth 2006).
This research is signi�cant for the following reasons.

First, analytical growth curves improve the understanding
of clique tree clustering's performance. Consider Kepler's
three laws of planetary motion, developed using Brahe's ob-
servational data of planetary movement. There is a need
to develop similar laws for clique tree clustering's perfor-
mance, and in this paper we obtain laws in the form of
Gompertz growth curves for certain bipartite BNs (Meng-
shoel, Wilkins, & Roth 2006). These curves give signi�-
cantly better �t to the raw data than previously employed
exponential curves, provide better insight into the underly-
ing mechanisms of the algorithm, and may be used to ap-
proximately predict the performance of clique tree cluster-
ing. Second, growth curves can be used to summarize per-
formance of different BN inference algorithms or different
implementations of the same algorithm on benchmarks, and
thereby aid in evaluations. Suppose that the growth curves
g(x) and h(x) were obtained by benchmarking slightly dif-
ferent clique tree algorithms. Compared to using only raw
data, it may be easier to understand the performance differ-
ence between the two algorithms by comparing the parame-
ter values of g(x) and h(x). Third, growth curves provide
estimates of resource consumption in terms of clique tree
size. Resource bounds, for example on memory size and in-
ference time, represent requirements from applications and
can also be expressed in terms of clique tree size. Hence,



this approach enables trade-off studies of resource consump-
tion versus resource bounds, which is important in resource-
bounded reasoners (Mengshoel 2007).
The rest of this paper is organized as follows. After �rst

introducing notation and concepts, we study BNs in which
the number of moral edges and clique tree sizes are char-
acterized by random variables. Second, we describe how
growth curves can provide a macroscopic model of how
clique trees grow as a function of C=V -ratio or expected
number of moral edges. Third, we present experiments with
varying number of BN root and leaf nodes. We compare dif-
ferent mathematical models of growth, and �nd that Gom-
pertz growth curves give the best �t to experimental results.
Finally, we conclude and suggest future research directions.

Background
A Bayesian network (BN) is a tuple � = (X ,
E, P ), where (X , E) is a DAG with an associ-
ated set of conditional probability distributions P =
fPr(X1 j �X1), : : : , Pr(Xn j �Xn)g. Here, Pr(Xi j
�Xi) is the conditional probability distribution forXi 2X .
Let �Xi represent the instantiation of the parents�Xi ofXi.
The independence assumptions encoded in (X , E) imply
the joint probability distribution

Pr(x) =

nY
i=1

Pr(xi j �Xi); (1)

where Pr(x) = Pr(X1 = x1, : : :, Xn = xn).
A clique tree �000 is constructed from a BN in the follow-

ing way by the HUGIN clique tree clustering algorithm (Lau-
ritzen & Spiegelhalter 1988; Andersen et al. 1989). First,
an initial moral graph �0 is constructed by making an undi-
rected copy of � and then augmenting it with moral edges
as follows. For each node X 2 X , HUGIN adds to �0 a
moral edge between each pair of nodes in �X if no such
edge already exists in �0. Second, HUGIN creates a tri-
angulated graph �00 by heuristically adding �ll-in edges to
�0 such that no chordless cycle of length greater than three
exists. Third, a clique tree �000 is created from the trian-
gulated graph �00. For any two nodes F and H in the
clique tree, all nodes between them contain F \ H . Us-
ing �000, HUGIN can perform belief updating (compute mar-
ginals) (Lauritzen & Spiegelhalter 1988) or belief revision
(MPE computation), and the compilation and propagation
times are in both cases strongly dependent upon the size
of �000. The complexity of many exact BN inference algo-
rithms � including tree clustering algorithms, conditioning
algorithms, and elimination algorithms � has been found to
depend on treewidth $� or on minimal maximal clique size
h�, where $� = h� � 1 (Lauritzen & Spiegelhalter 1988;
Dechter & Fattah 2001). Treewidth computation is NP-
complete (Arnborg, Corneil, & Proskurowski 1987), and
greedy triangulation heuristics that compute upper bounds
on treewidth are typically used in practice (Koster, Bodlaen-
der, & van Hoesel 2001).
Using randomly generated problem instances, one can

systematically investigate BN inference algorithms (Suer-
mondt & Cooper 1990; Ide, Cozman, & Ramos 2004;
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Figure 1: Compilation of BPART BN � (top) to clique tree
�000 (bottom). There is a loop (V1; V2; V3; V4) in the moral
graph �0, leading to a �ll-in edge (V2; V4) in triangulated
graph �00, which again leads to cliques fV4; V1; V2g and
fV4; V2; V3g in the clique tree �000.

Mengshoel, Wilkins, & Roth 2006). While our approach is
general, we study bipartite BNs in detail. These are BNs in
whichX is partitioned into root nodes V and leaf nodesC;
all edgesE are from nodes in V to nodes inC. These BNs
are generated randomly using the BPART algorithm (Meng-
shoel, Wilkins, & Roth 2006), which is a generalization of
an approach to randomly generate problem instances for sat-
is�ability (Mitchell, Selman, & Levesque 1992). Here is an
example of a small BPART BN.
Example 1 (BPART Class A BN) Figure 1 shows how a
BPART BN may be compiled into a clique tree. For each
BN leaf node C 2 fC1; C2; C3; C4; C5; C6g, a clique is cre-
ated. In addition, there are two cliques containing BN root
nodes only, namely the cliques fV1, V2, V4g and fV2, V3,
V4g.
This bipartite BN illustrates the crucial formation of cy-

cles in a BN's moral graph and the resulting generation of
�ll-in edges. In larger BNs, it is important but also very
dif�cult to understand and predict clique tree clustering's
cycle-generation and �ll-in processes.
Bipartite BNs are found in applications, including in med-

ical diagnosis BNs (Shwe et al. 1991) and in error correc-
tion coding (MacKay 2002). In addition, general BNs often
have non-trivial bipartite components. The BPART algo-
rithm operates as follows. First, V = jV j root nodes and
C = jCj leaf nodes, all with S states, are created. For each
leaf node, P parent nodes fX1, . . . , XP g are picked uni-
formly at random without replacement among the V root
nodes. Tree clustering's moralization step in turn ensures
that there are edges between all P root nodes that share a



leaf node. To keep the discussion succinct, we often say
that BPART picks moral edges and omit explicit mention of
tree clustering's moralization step. Conditional probability
tables (CPTs) of all nodes are also constructed by BPART;
however in this paper we focus on the impact of the struc-
tural parameters V , C, P , and S on clique tree size. Con-
sequently, the signature BPART(V , C, P , S) is used. The
total number of BN nodes is N = C + V .

From Bayesian Networks to Clique Trees
The balls and bins model, where balls are placed uniformly
at random into bins, turns out to be useful in our analysis of
tree clustering's moralization step. Let m denote the num-
ber of balls and n denote the number of bins. Further, let Y
be a random variable representing the number of empty and
occupied bins respectively. The expected number of occu-
pied bins Y is

E(Y ) = n (1� (1� 1=n)m) : (2)

In our analysis of clique tree clustering, bins are all possible
edges in the moral graph and balls are non-root nodes that
induce actual edges in the moral graph.

De�nition 2 (Edge-bin) Let V be the non-leaf nodes in a
BN. An edge-bin is an edge in the moral graph, induced by
two non-leaf nodes fV1, V2g, where V1; V2 2 V and V1 6=
V2. The set of all edge-bins is ffV1; V2g j V1; V2 2 V g.
De�nition 3 (Edge-ball) Let V be the non-leaf nodes in a
BN. An edge-ball is the set of moral edges induced by the
P parents �C = fV1; :::; VP g � V of a non-root node C:
ffV1, V2g, fV1, V3g, ..., fVP�1, VP gg.
For bipartite BNs, the non-leaf nodes are the root nodes

and the non-root nodes are the leaf nodes. In the BPART(V ,
C, 2, S) model, where P = 2, all edge-bins are uniformly
and repeatedly eligible for placing edge-balls into. In other
words, we have sampling with replacement. Intuitively, as
the C=V -ratio or other measures of connectivity increase
(Mitchell, Selman, & Levesque 1992; Mengshoel, Wilkins,
& Roth 2006), it gets more and more likely that the same
moral edges get picked two or more times. This intuitive
argument is formalized in this theorem.

Theorem 4 (Moral edges, two parents) Consider BNs
generated using BPART(V , C, P , S). Let the number of
moral edges created by tree clustering be a random variable
W . For P = 2 we have:

E(W ) =

�
V

2

� 
1�

�
1� 1

��
V

2

��C!
: (3)

Proof. We use the balls and bins model and let the edge-balls
be the m = C leaf nodes. The edge-bins are all possible
n =

�
V
2

�
moral edges in a bipartite graph with V root nodes.

Pluggingm and n into (2) gives (3).
In contrast to the C=V -ratio (Mitchell, Selman, &

Levesque 1992; Mengshoel, Wilkins, & Roth 2006), the ex-
pectationE(W ) in (3) takes into account how tree clustering

picks parents among pairs of BN root nodes with replace-
ment. For low values of C=V or E=V , the effect of replace-
ment is minor, but for largeC=V orE=V the difference may
be substantial as illustrated in the following examples.

Example 5 (C = 30 leaf nodes) Let V = 30, C = 30, and
P = 2. The expected number of moral edges isE(W ) = 28:
99 using (3).

Example 6 (C = 300 leaf nodes) Let V = 30, C = 300,
and P = 2. The expected number of moral edges is
E(W ) = 216: 91 using (3).

The difference between these two examples is important,
because the number of moral edges as well as how they are
connected and form cycles (which again need to be triangu-
lated) are key drivers of clique tree size.
For P > 2, BPART uses a combination of sampling with

replacement and sampling without replacement. In order
to simplify analysis, we now introduce a variant BPART+
which works exactly as BPART except that the P parent
nodes are picked with replacement.

Theorem 7 (Moral edges, any number of parents)
Consider BNs generated using BPART+(C, V , P , S), and
let the number of moral edges created by tree clustering be
a random variable Z. Then:

E(Z) =

�
V

2

� 
1�

�
1� 1

��
V

2

��C(P2)!
: (4)

Proof. We use the balls and bins model, and again the num-
ber of edge-bins is n =

�
V
2

�
in a bipartite graph with V root

nodes. Since BPART+ employs sampling with replace-
ment, the number of edge-balls is m = C �

�
P
2

�
. Plugging

m and n into (2) gives (4).
Theorem 7 is clearly a generalization of Theorem 4. Fur-

ther, E(Z) can be used as an approximation for E(W ) for
BPART(V , C, P ) for P > 2, since it is well-known that
sampling with replacement approaches sampling without re-
placement as the number of objects sampled from (here, the
V root nodes) tends to in�nity.
Why are the above balls and bins models of BN moraliza-

tion interesting? The reason is that we are concerned with
the possible causes, at a macroscopic level, of inference dif-
�culty for tree clustering, and the expected number of moral
edges is one such cause. When it comes to the effect, namely
tree clustering performance, it is natural to minimize the size
of the maximal clique. Since this is hard (Arnborg, Corneil,
& Proskurowski 1987), current algorithms including HUGIN
use heuristics that upper bound optimal maximal clique size
and clique tree size. Such upper bounds on clique tree size
are just referred to as clique tree sizes in the following.
For bipartite BNs, including BPART BNs, there are two

types of nodes in the clique tree as re�ected in the following
de�nition.1

1This and the following de�nition can easily be generalized to
cover arbitrary BNs, but in order to be consistent with the experi-
ments we use bipartite BNs in these de�nitions.



De�nition 8 (Root clique, mixed clique) Consider a
clique tree �000 constructed from a bipartite BN �. A clique
in �000 is denoted a root clique if all the BN nodes in that
clique are root nodes in �. A clique in �000 is denoted a
mixed clique if the BN nodes in that clique are both root
nodes and leaf nodes in �.
Random variablesKT ,KR, andKM are used to represent

the total clique tree size, the size of all root cliques, and the
size of all mixed cliques respectively:

KT = KR +KM : (5)

Total clique tree size is the sum of the clique sizes, as is ap-
propriate for HUGIN. We use (5) and linearity of expectation
to obtain

E(KT ) = E(KR) + E(KM )

�T = �R + �M : (6)

When varying one or more of BPART's parameters we
sometimes make that explicit in (6). For instance, the no-
tation �R(C) or �M (C) means that C is varied while V ,
P , and S are kept constant. In the experimental part of this
paper, �R will be estimated using its sample mean �̂R. Col-
lections of such sample means are then used to construct
growth curves.

Clique Tree Growth Curves
Here, we develop macroscopic and restricted models of
clique tree growth that extend exponential growth curves
(Mengshoel, Wilkins, & Roth 2006) that model unrestricted
growth. Even though Bayesian networks and clique trees
are discrete structures, we use continuous growth models in
order to facilitate analysis.
De�nition 9 (Clique tree growth curve ) Let gR(x) be the
growth curve for all root cliques and gM (x) the growth
curve for all mixed cliques. The (total) clique tree growth
curve for a bipartite BN is de�ned as

gT (x) = gR(x) + gM (x):

A number of sigmoidal growth curves (�S-curves�) have
been used to model restricted growth, including the logistic,
Gompertz, Complementary Gompertz, and Richards growth
curves (Banks 1994; Lindsey 2004). It turns out that the
Gompertz growth curve gives a good approximation for
clique tree growth.
De�nition 10 (Gompertz growth curve ) Let � , 
 2 R
with � > 0 and 
 > 0. The Gompertz growth curve is

g(x) = g(1)e��e
�
x
; (7)

where g(1) is the asymptote as x!1.
The derivative g0(x) of the Gompertz growth curve

g0(x) =
d

dx
g(x) = g(1)�
e�
xe��e

�
x
;

is an expression of the growth rate of g(x); clearly g0(x) > 0
given our assumptions in De�nition 10.
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Figure 2: Top: Gompertz curves g1(x) = 220e�5e
�0:3x

(green dotted curve), g2(x) = 220e�15e
�0:3x

(black solid
curve), and g3(x) = 220e�5e

�0:2x
(blue boxed curve). Bot-

tom: Growth rates g01(x), g02(x) and g03(x) for the Gompertz
growth curves.

In Figure 2 we investigate how the parameters g(1) , �,
and 
 impact the shape of Gompertz curves. The factor
g(1) = 220 is obtained, for example, by considering bipar-
tite BNs with V = 20 binary (S = 2) root nodes. Figure 2
also shows how the growth rate g0(x) changes when the pa-
rameters � and 
 are varied. Let us �rst vary � as shown in
Figure 2. By increasing � from � = 5 to � = 15 while keep-
ing 
 = 0:3 constant, the x-location of maximal growth rate
g0(x) is increased as well. However, the value of g0(x) at its
maximum does not change. Let us next vary 
 as illustrated
in Figure 2. As 
 decreases from 
 = 0:3 to 
 = 0:2, while
� = 5 is kept constanc, the x-location of maximal g0(x) in-
creases. In addition, the maximal value of g0(x) decreases
with 
 decreasing, and generally growth gets more gradual
as 
 decreases.
In the context of BNs, the independent variable x for the

growth curve g(x) may be parametrized using x = C, x =
C=V , x = E=V = CP=V , or x = E(W ), depending on
the data available and the purpose of the model. We now
introduce a Gompertz growth curve for BPART.

Theorem 11 (BPART Gompertz growth curve) The total
growth curve gT (x) for BPART(V , C, P , S), assuming
Gompertz growth for root cliques and where x = C is the
independent variable, is

gT (x) = S
V e��e

�
x
+ xSP+1: (8)

Proof. Since BPART BNs are bipartite, the growth curve
has the form gT (x) = gR(x) + gM (x), where gR(x) =



gR(1)e��e
�
x

since we have the Gompertz growth curve.
For BPART(V , C, P , S) we have gR(1) = SV , and
therefore gR(x) = SV e��e

�
x
for appropriate choices of

� and 
. Total mixed clique size is C � SP+1 (Mengshoel,
Wilkins, & Roth 2006), and hence gM (x) = xSP+1. By
forming gR(x) + gM (x) we obtain the desired result (8).
Analytical growth models or growth curves have been

used to model organisms in biology and medicine, growth of
technology use or penetration, and growth of organizations
or societies including the Web (Banks 1994; Lindsey 2004).
However, our use of growth curves to model how clique tree
size grows with x = C, x = C=V , or x = E(W ) is, to our
knowledge, novel.
The Gompertz growth curve can be derived by solving

the differential equation dg(x)=dx = ag(x), where a is a
growth coef�cient (Banks 1994). Here, a is not constant
but exponentially decreasing, formally da=dx = �ka for
k > 0. These two equations can be solved to obtain (7);
see (Banks 1994). While a detailed study is beyond the
scope of this paper, it appears plausible that these differ-
ential equations re�ect, at a macroscopic level, clique tree
clustering's formation of cycles in a moral graph �0 along
with the generation of �ll-in edges. Once one cycle appears
in �0, there may be many cycles appearing, all needing �ll-in
edges. Thus, once cycle formation starts in �0, a faster than
exponential growth in root clique tree size gR(x) is realis-
tic and indeed supported by previous experimental results
(Mengshoel, Wilkins, & Roth 2006). This rapid growth can
be captured by Gompertz growth curves.
We emphasize that Gompertz curves do not always pro-

vide accurate models of clique tree growth. In particular,
the assumption g0R(x) > 0 is not valid for very small x = C.
Consider the �rst few BN leaf nodes added by BPART.
When there is no leaf node and x = 0, clearly �R(0) = V
and �M (0) = 0. When there is one leaf node with P par-
ents and x = 1, �R(1) = V � P and �M (1) = SP+1.
Since �R(0) > �R(1), the contribution of the root cliques
to the total clique tree size in fact decreases from x = 0 to
x = 1, and clearly this is not consistent with g0R(x) > 0.
However, this early stage of growth is perhaps the least in-
teresting since the total clique tree size is small and not a
concern in applications. Consequently, we consider this a
minor limitation and use C=V � 1=2 in our experiments
below.
Finally, we note that the Gompertz growth curve has a

linear form, de�ned as follow (Lindsey 2004).
De�nition 12 (Gompertz linear form) The Gompertz lin-
ear form is

ln

�
� ln g(x)

g(1)

�
= ln(�)� 
x (9)

Using (9), the Gompertz curve parameters � and 
 in (7)
can be estimated from data using linear regression, as we
will see in the next section.

Experiments
In the experiments we address the following questions: How
well do Gompertz growth curves match sample data in the
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Figure 3: Experimental results for bipartite BNs with V =
30 root nodes and varying number of leaf nodes. Top: Com-
parison of Gompertz and other growth curves with the sam-
ple means. Bottom: Linear forms showing how the growth
curves were obtained.

form of clique trees generated from bipartite Bayesian net-
works using tree clustering? How well do Gompertz growth
curves �t sample data compared to alternative growth curve
models? In answering these questions, we extend previ-
ous research (Mengshoel, Wilkins, & Roth 2006) and use a
greater range of values for C=V , investigate V = 20 and
V = 30, and introduce E(W ) in addition to C=V as the in-
dependent parameter. Clique trees were generated using an
implementation of the HUGIN clique tree clustering algo-
rithm. Clique trees were optimized heuristically, using the
minimum �ll-in weight triangulation heuristic, as treewidth
computation is NP-complete.

Comparison between Growth Models
The purpose of the �rst set of experiments was to compare
the Gompertz growth model with a few alternatives: Expo-
nential, logistic, and complementary Gompertz. Here, we
report on Bayesian networks generated using the signature
BPART(30, C, 2, 2) with varying values for C. For each
C=V -level, 100 BNs were sampled using BPART.
We now present the results of the HUGIN experiments.

At the top of Figure 3, sample means �̂R and correspond-
ing points from analytical growth curves as a function of
E(W ) are presented. The bottom of Figure 3 shows how
the growth curves at the top were obtained using linear forms
such as (9). The following Gompertz growth curve was ob-



tained

gR(x) = 2
30 � exp(�19: 14� exp(�0:005874x));

where x = E(W ): The parameters � and 
 were for the
other growth curves computed in a similar manner. Clearly,
the Gompertz curve �ts the data much better than the alter-
native growth curves analyzed, with R2 = 0:9995 versus
R2 = 0:9413 (for logistic) and R2 = 0:9407 (for comple-
mentary Gompertz).

Gompertz Growth Model Details
In a second set of experiments, Bayesian networks were gen-
erated using BPART(20, C , 2, 2) with varying values forC.
For each C=V -level, 100 BNs were sampled using BPART.
Using this relatively low value for V allowed us to generate
BNs for which the generated clique trees did not exhaust the
computer's memory even for very large C, thus supporting a
comprehensive analysis using Gompertz growth curves with
both x = C=V and x = E(W ) as independent variables.
Figure 4 illustrates the results of these HUGIN experi-

ments. In the top row of Figure 4, sample means and cor-
responding points from the Gompertz growth curve

gR(x) = 2
20 � exp(�9: 906� exp(�0:1118x));

as a function of x = C=V are presented along with an ex-
ponential regression curve. The values of � = e2:293 = 9:
906 and 
 = 0:1118 were obtained from the Gompertz lin-
ear form as illustrated to the top right in Figure 4, based on
sample means for the clique tree root cliques and the linear
regression result ln(�)� 
x = �0:1118x+ 2:293.
In the bottom row of Figure 4, we plot the expected num-

ber of moral edges E(W ) along the x-axis. Note that the
right-most sample average in the bottom row of Figure 4, at
x = E(W ) � 123, corresponds to the sample average at
C=V = 10 in the top row of Figure 4. We present sample
means along with the corresponding points from a Gompertz
growth curve as a function of E(W ); an exponential regres-
sion curve is presented as a baseline. Here, the Gompertz
growth curve was empirically determined to be

gR(x) = 2
20 � exp(�12: 43� exp(�0:01187x));

where x = E(W ): The parameters � and 
 were computed
in a similar manner to above and as summarized to the bot-
tom right in Figure 4.
Figure 4 clearly shows the improved �t provided by Gom-

pertz curves compared to exponential curves. Further, x =
E(W ) provides a better �t than x = C=V but for a nar-
rower domain. As a heuristic, one can say that x = E(W )
is preferable for local growth models for small values of x,
while x = C=V is better for global models and for large x.

Conclusion and Future Work
Much progress has recently been made, both in the area of
Bayesian network (BN) reasoning algorithms and in the area
of applications of BNs. However, a precise understanding of
how varying structural parameters cause BNs to have large
treewidths or optimal clique tree sizes is still lagging. In
this paper, we have investigated the tree clustering approach

to BN inference by employing a growth curve approach. We
have characterized the growth of clique tree size as a func-
tion of an increase in the expected number of moral edges
or an increasing C=V -ratio, for example resulting from an
increase in the number of leaf nodes in bipartite BNs. Gom-
pertz growth curves have, for the bipartite BNs investigated,
been shown to give excellent �t to empirical clique tree data
and they appear theoretically plausible as well.
Areas for future work include the following. First,

this type of approach may be utilized in trade-off stud-
ies and in knowledge-based model construction, where in
both cases there is uncertainty regarding the structure of the
BNs processed. Second, it would be interesting to develop
more comprehensive analytical models including models for
larger classes of BNs.
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Figure 4: Empirical results for bipartite Bayesian networks generated with V = 20 root nodes and a varying number of leaf
nodes C. Top left: Gompertz growth curve as a function of the C=V -ratio. Top right: Gompertz growth curve's linear form as
a function of the C=V -ratio; used to create the Gompertz growth curve to the left. Bottom left: Gompertz growth curve as a
function of E(W ). Bottom right: Gompertz growth curve's linear form as a function of E(W ); used to create the Gompertz
growth curve to the left.
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